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 5 

In section 1, we provide a detail description of how the inference is implemented. We further discuss 6 

primitive action in section 2 and 3. Finally we show the full grammar of the toy assembly task used in our 7 

experiment. 8 

 9 

1. Inference by Message Passing  10 

Input: 11 

 The constructed Bayes network. 12 

 CPT ( | )e sP v v  for every primitive v 13 

 CPT ( | , )v

s eP Z v v  for every primitive v, including special value ( |! )vP Z v  14 

 Prior information ( | )P M A   for every OR-rule A -> M | … 15 

 Prior information ( ) 1P S   16 

 Prior information ( | )sP S S  17 

 Prior information ( | , )end

eP Z S S  18 

Step 0 : For every composition A, recursively compute: 19 

M in A

( |! ) ( |! )A MP Z A P Z M   20 

Note: since scaling the likelihood ( | , )v

s eP Z v v  of primitive v does not change the inference 21 

result. In our implementation, we allow the value bigger than 1 and scale it so that 22 

( |! ) 1vP Z v   for every primitive v. Then ( |! ) 1AP Z A   for every A. Then we can safely ignore 23 

them in following calculation. 24 

Step 1 – Forward Phase: 25 



 Forward Phase on primitive v: assume ( )( , | )pre v

sP v Z v  is given, compute: 26 

( ), ( )( , , | ) ( , | ) ( | ) ( | , )pre v v pre v v

s e s e s s eP v v Z v P v Z v P v v P Z v v    27 

( ), ( ),

1

( , | ) ( , , | )
T

pre v v pre v v

e s e

t

P v Z v P v t v Z v


     28 

 Forward Phase on composition A defined by A -> M N: given ( )( , | )pre A

sP A Z A , compute: 29 

( ) ( )( , | ) ( , | )pre M pre A

s sP M t Z M P A t Z A      30 

For t is between 1 and T. This will apply for every t is used in all following formulas. 31 

Recursively perform forward phase on M to get ( ),( , | )pre M M

eP M Z M  32 

( ) ( )( , | ) ( , , | )pre N pre M

s eP N t Z N P M t Z M M       33 

Recursively perform forward phase on N to get ( ),( , | )pre N N

eP N Z N   34 

( ), ( ),( , | ) ( , | )pre A A pre N N

e eP A t Z A P N t Z N       35 

 Forward Phase on composition A defined by A -> M | N: given ( )( , | )pre A

sP A Z A , compute: 36 

( ) ( )( , | ) ( , | )pre M pre A

s sP M t Z M P A t Z A      37 

( ) ( )( , | ) ( , | )pre N pre A

s sP N t Z N P A t Z A       38 

Recursively perform forward phase on M and N to get ( ),( , | )pre M M

eP M Z M  and 39 

( ),( , | )pre N N

eP N Z N , then: 40 

, ( ) , ( )( , | ) ( | ) ( |! ) ( , | )A pre A N M pre M

e eP A t Z A P M A P Z N P M t Z M        41 
, ( )( | ) ( |! ) ( , | )M N pre N

eP N A P Z M P N t Z N     42 

 Start from ( | )sP S S , perform forward phase on S, and recursively on other actions. The 43 

output is ( )( , | )pre A

sP A Z A  and ( ),( , | )pre A A

eP A Z A  for every A. 44 

 45 
Step 2 – Backward Phase: similar to Forward Phase 46 

 Backward Phase on primitive v: assume ( )( | , )post v

eP Z v v  is given, compute: 47 

, ( ) ( )( , | , ) ( | , ) ( | ) ( | , )v post v post v v

e s e e s s eP v Z v v P Z v v P v v P Z v v    48 



, ( ) , ( )

1

( | , ) ( , | , )
T

v post v v post v

s e s

t

P Z v v P v t Z v v


     49 

 Backward Phase on composition A defined by A -> M N: given ( )( | , )post A

eP Z A A , compute: 50 

( ) ( )( | , ) ( | , )post N post A

e eP Z N t N P Z A t A      51 

Recursively perform backward phase on N to get , ( )( | , )N post N

sP Z N N  52 

( ) , ( )( | , ) ( | , )post M N post N

e sP Z M t M P Z N t N       53 

Recursively perform backward phase on N to get , ( )( | , )M post M

sP Z M M . Then: 54 

, ( ) , ( )( | , ) ( | , )A post A M post M

s sP A A t A P Z M t M      55 

 Backward Phase on composition A defined by A -> M | N: given ( )( | , )post A

eP Z A A , compute: 56 

( ) ( )( | , ) ( | , )post M post A

e eP Z M t M P Z A t A      57 

( ) ( )( | , ) ( | , )post N post A

e eP Z N t N P Z A t A      58 

Recursively perform backward phase on M and N to get , ( )( | , )M post M

sP Z M M  and 59 

, ( )( | , )N post N

sP Z N N . Then: 60 

, ( ) , ( )( | , ) ( | ) ( |! ) ( | , )A post A N M post M

s sP Z A t A P M A P Z N P Z M t M        61 

, ( )( | ) ( |! ) ( | , )M N post N

sP N A P Z M P Z N t N      62 

 Start from ( | , )end

eP Z S S , perform backward phase on S and recursively on other action. The 63 

output is ( )( | , )post A

eP Z A A  and , ( )( | , )A post A

sP Z A A . 64 

Step 3 – Compute Posterior Probability: by multiplying forward and backward messages: 65 

  ( ), , ( ) ( ) , ( )( , | ) ( , | ) ( | , )pre A A post A pre A A post A

s s sP A Z A P A Z A P Z A A     66 

 ( ), , ( ) ( ), ( )( , | ) ( , | ) ( | , )pre A A post A pre A A post A

e e eP A Z A P A Z A P Z A A     67 

 ( ), , ( )

M not in pre(A), A, post(A)

( , | ) ( , | ) ( | ! )pre A A post A M

s sP A Z A P A Z A P Z M     68 



 ( ), , ( )

M not in pre(A), A, post(A)

( , | ) ( , | ) ( | ! )pre A A post A M

e eP A Z A P A Z A P Z M     69 

 If v is a primitive we can have the joint distribution: 70 

 ( ), , ( ) ( ), ( )( , , | ) ( , , | ) ( | , )pre v v post v pre v v post v

s e s e eP v v Z v P v v Z v P Z v v     71 

 ( ), , ( )

M not in pre(v), v, post(v)

( , , | ) ( , , | ) ( | ! )pre v v post v M

s e s eP v v Z v P v v Z v P Z M     72 

Step 4 – Compute the happening probability: Start from ( | ) ( ) 1P S Z P S     73 

 For AND-rule A -> M N, assume ( | )P A Z  is given, compute: 74 

( | ) ( | ) ( | )P M Z P N Z P A Z      75 

 For OR-rule A -> M | N, given ( | )P A Z , compute:  76 

1

( , | ) ( | ) ( , | )
T

e

t

P M Z A P M A P M t Z M


        77 

1

( , | ) ( | ) ( , | )
T

e

t

P N Z A P N A P N t Z N


        78 

( , | )
( | ) ( | )

( , | ) ( , | )

P M Z A
P M Z P A Z

P M Z A P N Z A

 
  

    
 79 

( , | )
( | ) ( | )

( , | ) ( , | )

P N Z A
P N Z P A Z

P M Z A P N Z A

 
  

    
 80 

Output: For every action A in the grammar: ( | )P A Z , ( , | )sP A Z A  and ( , | )eP A Z A . If v is a 81 

primitive we can have the joint: ( , , | )s eP v v Z v . 82 

Optionally we can have 2 more steps: 83 

Step 5: For every action A, we can compute ( | )sP A Z and ( | )eP A Z . If v is a primitive then we also 84 

have ( , | )s eP v v Z .  85 

Probability of label of a time step t being action A: ( | )tP label A Z  can also be derived. 86 

The calculation is shown in section 4.5 in the paper. 87 



Step 6 (optional & not in the paper) Compute the joint of the start and the end for every action: This 88 

can be done if needed. However the computational complexity will change. 89 

 For every primitive v, compute ( , | ) ( | ) ( | , )v v

e s e s s eP v Z v P v v P Z v v  90 

 For every composition A -> M, N: 91 

Recursively compute ( , | )M

e sP M Z M , ( , | )N

e sP N Z N . Then: 92 

1

( , | ) ( , | ) ( , | )
T

A M N

e s e s e s

t

P A Z A P M t Z M P N Z N t   


        93 

 For every composition A -> M | N:  94 

Recursively compute ( , | )M

e sP M Z M , ( , | )N

e sP N Z N . Then: 95 

 ( , | ) ( | ) ( |! ) ( , | )A N M

e s e sP A Z A P M A P Z N P M Z M           96 

  ( | ) ( |! ) ( , | )M N

e sP N A P Z M P N Z N       97 

 For every value of ,   between 1 and T. 98 

 Given ( , | )A

e sP A Z A  for every A, we can compute the joint: 99 

( ), , ( ) ( ) ( )( , , | ) ( , | ) ( , | ) ( | )pre A A post A pre A A post A

s e s e s eP A A Z A P A Z A P A Z A P Z A    100 

( ), , ( )

M not in pre(A), A, post(A)

( , , | ) ( , , | ) ( | ! )pre A A post A M

s e s eP A A Z A P A A Z A P Z M     101 

 Then for every A, we can compute ( , | )s eP A A Z  similar to step 5. 102 

 103 

Computational Complexity: The inference process starts from S and then performs on all symbols 104 

recursively like a depth-first-search travel on the AND-OR tree representation of the grammar.  (Note 105 

that if the grammar does not have any OR-rule, it becomes a traditional message passing algorithm on a 106 

linear chain).  Each symbol is “visited” 4 times (4 above steps), there are calculations of vectors of size 107 

Tx1 and matrices of size TxT in the step 1 and step 2. Overall the complexity is 2( )O KT  where K is the 108 

number of symbol in the compiled grammar. With K=50 and T=1000, our Matlab implementation runs in 109 

0.1 second on an average machine (CPU 2.5GHz, RAM 6GB).  110 

If step 6 is performed, the complexity becomes 3( )O KT . 111 



Note that even running in streaming mode, each inference is independent of each other. Hence the 112 

inference rate does not need to be the same as video rate. In fact one can choose to only perform 113 

inference when needed. 114 

 115 

2. Primitive action 116 

Calculating vD  for primitive action v is only ingredient for the Bayes network that makes use of the test 117 

sequence and can be the trickiest one to compute. We assume, for each primitive, there is a detector 118 

that will output the TxT “heatmap” vD  of the likelihood of the action for every possible interval. Ideally 119 

if the action starts at 0  and ends at 0  then 0 0[ , ]vD    would be high and [ , ]vD    would be low 120 

for every other ,   value.  121 

The detector is assumed to be black-box. It can be driven by explicitly detecting the start and the end of 122 

the action (experiment in section 6.2 and 5). An alternative way is to perform sliding-window-detection 123 

using statistics/features computed over the [ , ]   segment (experiment in section 6.1). Note that the 124 

calculation of [ , ]vD    can use the information of the entire input sequence if desired, not just the 125 

[ , ]   segment.  126 

As the factor P(v.end | v.start) accounts for the duration of the action and the factors 127 

( | . , . )vP Z v start v end  accounts for the visual information of the action, the visual detector do not need 128 

to concern about duration. Although one could derive a detector like that (or combine the 2 factors into 129 

1 single factor ( . , | . )vP v end Z v start ), we find that keeping these 2 factors separate is more flexible. 130 

That way we could change them independently, and we can run in streaming mode, where visual 131 

information is feed sequentially.  132 

Interpretation of the special value [ 1, 1]vD    133 

This value represents how likely the action v does not happen. Traditionally, non-maxima suppression 134 

and thresholding are performed on the heatmap vD  to obtain a set of detections. One can interpret the 135 

[ 1, 1]vD    as the threshold: a high value means the action more likely does not happen. Informally 136 

[ , ] / [ 1, 1] 1v vD D      means segment [ , ]   is a positive and the confidence is proportional with 137 

that ratio value. Where [ , ] / [ 1, 1] 1v vD D      basically means “nothing is known about [ , ]  ” (we 138 

made use of this in streaming mode). In our implementation, we choose [ 1, 1]vD    to be about the 139 

expected detection score so that it has above properties (though if one has a way to check if the action 140 

does not happen, it could also be incorporated). 141 

Intuitively, [ , ]vD    and [ 1, 1]vD    put relative weights on the probability of sequence where the 142 

action happens and the sequences where it does not, respectively, when we are considering the OR-143 



rule. For example if [ , ] / [ 1, 1]v vD D     is very big for some value ,   and these values are also 144 

temporally consistent with overall activity’s structure, this would contribute to increase the posterior 145 

probability of the sequence where action v happens. Note that if the grammar does not have any OR-146 

rules, then the value [ 1, 1]vD    will not affect the inference result.  147 

 148 

3. Special primitive action 149 

One can include primitive actions with special duration factor or visual observation factor to serve 150 

specific purpose. 151 

0-Duration Action: This action always has duration to be 0; and [ 1, 1] 1vD    , and [ , ] ( )v

vD f Z   . 152 

It will not affect the inference result of action localization within a sequence of actions. However its 153 

visual observation factor will affect the relative posterior probabilities between sequences where it 154 

happens and the sequences where it doesn’t. 155 

Dummy Action: This action does not have a visual observation factor (or equivalently constant 156 

likelihood value: [ , ] [ 1, 1] 1v vD D      ). It can serve as the gap between 2 actions in case we 157 

assume the start time of the next action is not the same as the end time of the current one. 158 

Negative-Duration Dummy Action: similar to above dummy action, except its duration is allowed to be 159 

negative. Including this between 2 actions allows them to overlap each other. This will be useful for 160 

approaches that recognize activity by recognizing overlapping segments of that activity. 161 

Waiting Action: in the Human-Robot collaboration application that we applied our method, the robot 162 

delivers the bins to the human operator. In case the human needs a specific bin that the robot has not 163 

yet delivered, he will have to wait. Therefore we designed a special “waiting” action that can starts at 164 

any moment in time but only ends when that bin is delivered (if the bin is already available, the action, if 165 

starts, will end immediately and have duration of 0).  166 

 167 

4. Toy assembly grammar 168 

S  → Body, (Wheel | null), NWT, sticker 169 

NWT  → NWT_AB ~ 60%  | NWT_C ~ 40% 170 

NWT_C  → Nose_C,  ((Wing_C,  Tail_C) | (Tail_C, Wing_C)) 171 

NWT_AB → Nose_AB,  (WT_A | WT_B) 172 

WT_A  → (Wing_A,  Tail_A) | (Tail_A, Wing_A ) 173 

WT_B  → (Wing_B,  Tail_B) | (Tail_B, Wing_B ) 174 

Body  → body1, body2, body3, body4 175 

Wheel   → wheel1, wheel2 176 

Nose_AB → nose_ab1, nose_ab2, nose_ab3, nose_ab4 177 



Nose_C  → nose_c1, nose_c2, nose_c3 178 

Wing_A  → wing_a1, wing_a2, wing_a3 179 

Wing_B  → wing_b1, wing_b2, wing_b3, wing_b4 180 

Wing_C  → wing_c1, wing_c2, wing_c3, wing_c4, wing_c5, wing_c6 181 

Tail_A  → tail_a1, tail_a2, tail_a3 182 

Tail_B  → tail_b1, tail_b2, tail_b3, tail_b4 183 

Tail_C  → tail_c1, tail_c2, tail_c3, tail_c4, tail_c5, tail_c6 184 

 185 

Map between primitive actions and corresponding bins: 186 

body1   5 187 

body2   5 188 

body3   3 189 

body4   4 190 

wheel1   3  191 

wheel2   3 192 

nose_ab1  3 193 

nose_ab2 4 194 

nose_ab3 3 195 

nose_ab4 3 196 

nose_c1  3 197 

nose_c2  4 198 

nose_c3  3 199 

 200 

wing_a1  3 201 

wing_a2  1 202 

wing_a3  4 203 

wing_b1  3 204 

wing_b2  1 205 

wing_b3  1 206 

wing_b4  4 207 

wing_c1  3 208 

wing_c2  2 209 

wing_c3  2 210 

wing_c4  1 211 

wing_c5  1 212 

wing_c6  2 213 

tail_a1  3 214 

tail_a2  5 215 

tail_a3  4 216 

tail_b1  3 217 



tail_b2  5 218 

tail_b3  5 219 

tail_b4  4 220 

tail_c1  3 221 

tail_c2  2 222 

tail_c3  2 223 

tail_c4  5 224 

tail_c5  5 225 

tail_c6  2 226 

sticker      2 227 

 228 

 229 

 230 

 231 

 232 


